QA/QC for Wastewater Laboratory Testing

George Bowman
Inorganics Supervisor
State Laboratory of Hygiene

Rick Mealy
Regional Certification Coordinator
DNR-Laboratory Certification

OVERVIEW

- Why QC?
- What's in it for me?
- QC vs. QA ...what's the difference?
- General Components of a QA/QC Program
- Examples of QC
- Setting up an Effective QA Plan

Quality Contorl

Fundamental concept applies far beyond laboratory

Would you buy used car from a car rental company?

.... drive cross-country before checking the oil, etc.?

Common sense

"Checks and balances" is a universal concept. (aircraft)

"To err" is human (double key entry)

Prove data valid mostly through documentation

"He who has the best documentation wins."

Important to data user **and** the laboratory

User wants to make correct decisions....and sleep at night!

Laboratory wants to produce a good product....and pass audits!

Yeah....but what's in it for me?

What's in it for me?

- ⇒ Millions spent on plant upgrades based on lab data (Consider the plight of plant designed and built using inaccurate flow measurement data that is <u>later</u> determined to be undersized)
- ⇒ Better data can result in reduced NR 101 fees
- ⇒ Needed to maintain lab certification/registration
- ⇒ Quality data required to show plant functioning properly
- ⇒ Policy and guidelines promote uniformity
- ⇒ Decreased learning curve for new employees
- ⇒ Fewer repeated analyses
- \Rightarrow And....?

OK, so QC and QA are important...but aren't they the same thing?

QC v. QA

QC

Specific technical, operational measures or activities to ensure lab data quality.

QA

General

management function
to ensure data quality
relies on:

- documentation and establishment of QC protocols,
- <u>evaluation</u> and summarization of their outcomes

With clear distinction....you can build a QA/QC program

Components of a good QA Program

The foundation

- Good facilities and equipment
- Training of personnel
- Operation plan (assigned responsibilities)
- Methods documented and followed

The structure

- Rigorous QC procedures
- Precision
- Accuracy
- Documentation to ensure traceability

A strong structure requires the use of the right materials.....

Type and Uses of QC samples

Blanks

- Laboratory reagent water.
- Used to verify the absence of contamination in the lab.
- Particularly important in phosphorus and ammonia testing.

Known Standards

- Used to verify calibration curve accuracy, or
- absence of bias in laboratory procedure (vs. matrix-effects)
- best if these are prepared from a different standard than is used for calibration standards.

Replicates

Used to measure the ability to reproduce your results. You got it right once, but can you do it again?

Type and Uses of QC samples

Spikes

Used to evaluate bias

(i.e.., the recovery of the analyte from the specific sample matrix).

If you only get 25% spike recovery,

.....and your sample concentration is close to a permit limitisn't it likely the permit limit has actually been exceeded?

Reference Samples

- Annual requirement
- "Show me you can do this test right"

Blind Standards

Same as reference samples, but more timely.

But the materials must be used correctly to serve their purpose: precision and accuracy

Precision

Accuracy (Bias)

How close you can get to the true value.

You want LOW bias (bias is not a good thing)

Precision

Reproducibility of the method. The ability to get the right answer - again

You want HIGH Precision

HIGH

LOW

Precision & Accuracy

Pitfalls of Poor P&A

- Report results that violate discharge limit...(when they actually didn't!).
- \$ Increased NR 101 fee\$.
- Periodic, <u>unexplainable</u> limit violations.
- Bring overall ability to operate plant into question.

Setting up an effective QA Plan

✓ Standard Operating Procedures (SOPs) should be available for anything not self-explanatory

Ex. How do you clean the phosphorus glassware?

Essentially, if someone unconnected to the lab were to perform this task, what guidance would they need to do it?

- ✓ You can simply reference SOPs, rather than including them in your QA Plan
- ✓ If you don't do it, DON'T include it in the QAP.

Many QA Manuals are merely loaded with marketing "fluff" that doesn't say much

QA Plan "DON'Ts"

DON'T allow your QA Manual to read like

The "baffle them with really serious, business-type words" approa

Quality Assurance is a systematic design plan incorporating a number of related laboratory aspects.

We know what QA is, but it's too complicated to explain here.

The "We do some really high-tech stuff here" approach

Accurate and precise analytical data can only be realized by systems that are capable of comparing the response of a real world sample to the response of a known standard.

First you have to calibrate.

Setting up an effective QA Plan

- Tables are better than lots of text!
 - ✓ the old "a picture is worth 1000 words" concept
 - ✓ Tables FORCE you to be brief

3 rules for building a QA Plan by tables

What am I <u>looking at</u>? (parameter)

What am I looking at it for (criteria)

What if it doesn't meet specifications? (Corrective Action)

Sound easy enough? Let's see some real-life examples.....

Setting up an effective QA Plan

Evaluating?	<u>Criteria</u>	Corrective Action
		1) Identify course
Method Blank	Below LOD	1) Identify source
		2) Correct & Reanalyze
		3) or Qualify data
Known Standard	Within 90-110%	1) Check prep. data
		2) Re-make & re-analyze
		3) Make new curve
Matrix Spike	Within Control	1) Re-make & re-analyze
1	Limits (80-120%)	2) Analyze known std.
		3) Qualify data
		5) Quality data

QA PLANS - The Bottom Line

brief NOT volumes

realistic NOT marketing "fluff"

Guidance NOT Philosophy

decision trees NOT generic options

reference NOT paperweight

tables NOT text

Quality Contorl

Control

Calibration

CALIBRATION - Discussion points

- Initial vs. continuing calibration
- How many standards to use?
- To include...or not to include (a blank)?
- Processing the data
 - » internal calibrations
 - » graph paper
 - » linear regressions
 - » software
- Evaluating a calibration
 - » visual
 - » statistical
 - » analytical

CALIBRATION - Initial Considerations

Frequency

- For best results, should be run daily.
- Alternatively, a "full" calibration can be analyzed initially and verified (with one or more standards) each day of analysis.

Use an appropriate number of standards

Calibrations must be constructed using at least 3 standards and a blank.

Know when to include a zero

- A good rule of thumb: if you can adjust your instrument to read zero in the presence of a blank, then include a zero point in your calibration curve.
- Including a zero is generally appropriate for colorimetric procedures

CALIBRATION - Initial Considerations

Define your calibration range properly

- Range should be appropriate for the samples being analyzed (i.e. don't calibrate from 1- 5 mg/L when all samples are between 0.05 0.5 mg/L).
- Better results are obtained when sample response is close to response of standards used to establish the calibration curve.
- Optimal results ==> when sample results fall near the mid-point.
- Standards should also be evenly spaced.
 - 1, 2, and 500 are NOT good levels for a calibration
- Whenever possible....bracket samples with calibration standards.
- Low standard not more than 2 to 5 times the LOD (best is = LOQ).

Pre-programmed Calibrations

- ⇒ Use of pre-programmed calibrations is <u>unacceptable</u>
- ⇒ Laboratory must generate its own standard curve.

NOTE: A manufacturer's claims that their method is approved or acceptable <u>does</u> <u>not</u> mean that the approval extends to pre-programmed calibrations.

Hand-drawn Calibration Curves

- \Rightarrow Plot concentration on the x-axis and absorbance on the y-axis.
- ⇒ A straight line which best fits the data points is then drawn.
- ⇒ The "best fit" line used to convert absorbance into concentration.
- ⇒ Makes traceability virtually impossible
 - Significant variability in how the <u>scale</u> of the graph is constructed
 - Significant variability in how any individual draws the "best fit" line

Scientific Calculators & Software

- ⇒ Using a standard procedure can eliminate sources of variability.
- \Rightarrow Linear regression = one of the most widely recognized means.
- ⇒ Linear regression equations can be generated.....
 -with an inexpensive scientific calculator
 -or most spreadsheet programs.

Calibration exercises 1. Graph paper

Make a calibration graph from:

Calibration				
Data				
mg/L P	<u>Abs.</u>			
0	0			
0.1	0.051			
0.5	0.25			
2	0.72			
5	1.24			

	Find Concentrations
then	for these
	<u>Absorbances</u>
	0.118
	0.531
	0.770
	0.853
	1.092

CALIBRATION - Processing the data by graph

1. Draw the X and Y axis (graph frame)

CALIBRATION - Processing the data by graph

...and read concentration off the x-axis.

CALIBRATION - Processing the data by graph

Observations

Some prepared graph landscape ws. portrait Some used the whole page, others just part of the page

Quite a bit of spread in the data....range of 1 ppm or more

Some read to nearest 0.01 ppm; others to nearest 0.1

Food for thought....

What if your permit limit is right about 2 ppm? Should the line pass through the origin (0,0)?

Calibration exercises2. Linear Regression

Calculate a regression line from:

Calibration				
Data				
mg/L P	<u>Abs.</u>			
0	0			
0.1	0.051			
0.5	0.25			
2	0.72			
5	1.24			

Find Concentrations
for these
<u>Absorbances</u>
0.118
0.531
0.770
0.853
1.092

CALIBRATION - Using the Sharp EL-520 Calculator

Basics

- MODE button: 0 = basic calculator, 1 = mean & SD, 2 = regression
- 2nd F button (yellow, upper left of calculator).
- 2nd F and DEL button clears memory...do this several times to be sure!
- STO button: adds the "X" component of an XY data pair
- M+ button: adds single datum or 2nd of a data pair to memory.
- RCL button: think "Re-call"; retrieves information.
- •****You may want to use a pen or pencil to push buttons!***
 - •Calculator instruction sheets include instructions on how to turn the calculator off.
 - •Don't need to do this now...but you should be know how to do it if you need to.
 - •Calculators are battery-powered with solar-powered back-up.
 - •Will automatically shut-off after about 10 minutes if not being used.

CALIBRATION - Entering Regression Data into Calculator

Calculator steps

Set Mode to "2": MODE

Clear the registers: 2nd F DEL

Enter 1st data pair:

M+

Cal	ibr	atic	n
		_	

Data

mg/L P Abs.

0

0.1 0.051

0.5 0.25

2 0.72

5 1.24

Enter 2nd data pair:

STO

M+

Enter 3rd data pair:

STO

M+

Enter 4th data pair:

STO

 \mathbf{M} +

Enter 5th data pair:

STO

 \mathbf{M} +

CALIBRATION - Regression using the Calculator

Obtain the calibration evaluation information

✓ Get the Correlation coefficient..: | RCL |

r = 0.982442272

✓ Get the Slope....:

RCL

b = 0.244713124

✓ Get the Intercept::

RCL

a = 0.080236051

Converting a sample absorbance to concentration

Absorbance = 0.118:

2nd F

0.154

Absorbance = 0.531:

1.842 2nd F

Absorbance = 0.770:

2.819 2nd F

Absorbance = 0.853:

3.158 2nd F

Absorbance = 1.092:

4.134 2nd F

CALIBRATION - Regression using the Calculator

Value of the Correlation coefficient (r)

- O Looking for $r \ge 0.995$
- O Tells you how closely points fit the regression (best fit) line

Value of the Slope (b)

- O With electrodes, helps tell condition of the electrode (-54 to -60)
- O Can keep records to show when the analysis is changing

Value of the Intercept (a)

- O Represents the concentration associated with NO (0) response
- O Thus gives an approximation of detection limit if your intercept exceeds your LOD, there may be contamination

The ONLY downside to using a calculator vs. a spreadsheet program is that you do NOT get the visual evaluation power afforded by charting the data and regression line.

r= 0.98244

Simple Visual Evaluation

Data points should very closely fit the resultant calibration line.

Statistical Evaluation

If using a linear regression, the correlation coefficient "r" provides a measure of the acceptability of a particular calibration curve.

- "r" = complex mathematical equation
- Values between 0 (no correlation) and 1 (perfect correlation).
- Scientific calculators which offer 2-variable statistics can do it.
- A basic spreadsheet program function: Excel, Lotus, QuattroPro
- "r" must be 0.995 or greater

CALIBRATION - how the correlation coefficient works

0

Unacceptable correlation...will result in biased data

Analytical Evaluation - initial

- Analyze an independent check standard
- If regression, convert calibration standard responses to concentration

Converting calibration responses to concentration

- ☆Compare recovery of the regression concentration relative to true value
- ☆Recoveries should generally be within 90-110%
- 2It's more difficult to achieve \pm 10% as you get close to the LOD

	True Concentration (mg/L)	Regression Concentration (mg/L)	Percent <u>Recovery</u>
Absorbance $= 0.000$:	0	-0.328	???
Absorbance = 0.051:	0.1	-0.119	ND
Absorbance $= 0.25$:	0.5	0.69	138%
Absorbance $= 0.72$:	2	2.61	130.5%
Absorbance $= 1.24$:	5	4.74	94.8%

Analytical Evaluation - ongoing

- Periodically confirm that response has not changed from initial
- Use a midpoint calibration standard (check standard) and blank
- Check at <u>beginning</u>, <u>every 10</u> samples and <u>end</u> of each batch. *Recovery must be within 90-110% for phosphorus and ammonia.*

% Recovery = measured Value x 100
True value

What do I do if the check standard is outside the 90-110% range?

- Cease running samples until the problem is corrected
- Repeat initial calibration
- Repeat sample analysis since last acceptable calibration check

Additional Calibration Checks

- Analyze a reference sample (externally generated)
- Good time to run your blind standards

Detection Limits

Limit of Detection (LOD) & Limit of Quantification (LOQ)

LOD

- ✓ Lowest concentration determined to be <u>significantly different</u> from a blank
- ✓ Formerly known as the MDL (Method Detection Limit)

LOQ

- ✓ Analyte concentration at which one can state with a stated degree of confidence that an analyte is present at a specific level in the sample tested.
- ✓ Defined in code [NR 149.03 (16)] as 10/3 times the LOD (i.e. 3.33 x LOD)

Why is it important to know the LOD?

- ⇒ Confidence in results reported
- ⇒Alerts data-user to uncertainties or limitations of the data
- ⇒ Proper decisions can be made based on data
 - •Compliance decisions often made from pooled data
 - •What do you do with data of: <25, 32, <40, 22.5, <50

Why is it important to know the MDL?

- ⇒ Censoring data biases data sets and restricts its usefulness
 - Analyte X detected at 50 ppm.
 - Decision is made to report < 100 ppm (which is certainly accurate)
 - •But what if the actual LOD is 10 ppm?
- ⇒ Potentially harmful levels of X may exist.....

but below our ability to detect them

- To remediate this situation successfully, need to know.....
- <u>if</u> analyte is present
- <u>if</u> the concentration is *changing*

Detection Limits

LOD/LOQ Interpretation

•It isn't there (NOT detectable)

- It IS there
- Quantity is uncertain
- <u>Un</u>enforceable (without multiple analyses)
- It IS there
- Quantity IS certain
- Enforceable

Detection Limits - Requirements to Determine & Report LOD

DNR "The Department"

Lab Certification

NR149.11(5)

Labs MUST determine their LODs

NR149.15(3)

report down to the LOD...for a specified list of metals/organics

Assuming you have one dilution of 300 mL

Watershed Management

DMRs

BOD report to 2 ppm

NH3, TP: report to LOD Default TP = 0.02 ppm Default NH3= 0.10 ppm

Wastewater parameters: Specific examples

Procedure for BOD

Detection Limits - BOD

BOD detection limits are theoretically based.

- •Assumption: the LEAST amount of depletion allowable is 2 mg/L.
- •Based on the highest volume of sample used in a dilution series.
- •This technique doesn't consider seed correction.

BOD bottle maximum volume!

	300 mĽ
LOD mg/L = 2 mg/L X	
	mL sample

If the	The LOD
highest sample	for that
volume used is:	sample is:
300 mL	2
200	3
100	6
75	8
50	12

Detection Limits - BOD

Example 1:

Dilution 1 100 mL Depletion = 6.7 BOD = 20

Dilution 2 75 mL Depletion = 4.5 BOD = 18

Dilution 3 50 mL Depletion = 3.5 BOD = 21

What value should be reported?

What level of detection is there?

Assuming all three dilutions met depletion criteria, report a BOD of 19.6 (20 + 18 + 21)/3

LOD is 6 (based on: highest volume = 100 mL)

Detection Limits - BOD

Example 2:

Dilution 1 50 mL Depletion: < 2 mg/L

Dilution 2 25 mL Depletion: < 2 mg/L

What value should be reported?

What can be done in the future?

Report a BOD of "<12"
Insufficient depletion; highest volume used is 50 mLs
Should be using more sample

Wastewater parameters: Specific examples

Procedure for TSS

Detection Limits - TSS

Like BOD, detection limits are theoretically based.

- •Assumption: Minimum capture weight of 1 mg (of residue).
- •Based on: Volume of sample filtered.

Thus, if 1 liter of sample is filtered, then you can "detect" 1 mg per liter.

LOD mg/L = 1000 X	1 mg /
LOD Ing/L = 1000 A	mL sample filtered

Volume filtered	Detection limit
25 mL	40 mg/L
50	20
100	10
250	4
500	2

Since most permit limits are about 30 mg/L, you will need to filter at least 50 mL of sample.

Wastewater parameters: Specific examples

Conventional procedure: TP, NH₃-electrode

Detection Limits - EPA procedure

- 1. Determine a spike concentration (close to the expected LOD)
- 2. Prepare at least 7 spiked replicates of reagent water at this spike level
- 3. Calculate the mean (X) and standard deviation (SD)
- 4. Obtain the "t"-value associated with the number of replicates
- 5. Calculate the LOD: **SD** times **t**
- 6. Perform the "5-point check" of the LOD

Detection Limits - EPA procedure

Ammonia Example

Spike level = 0.1 mg/L

Rep. 10.104Rep. 20.082Rep. 30.096

Rep. 4 0.1

Rep. 5 0.087

Rep. 6 0.114

Rep. 7 0.108

mean 0.099

st dev. 0.01135

t-value 3.143 from table based on # replicates

LOD= 0.035684 = t-value x std deviation

 $LOQ = 0.118948 = 3.333 \times LOD$

Discussion: If LOQ is theoretically equal to 10xSD, why doesn't that work here?

replicates

8

9

10

t-value

3.143

2.998

2.896

2.821

Detection Limits - Calculating Mean and SD on the Calculator

Going through the Ammonia LOD data

Set Mode to "1":

MODE

Clear the registers: 2nd F

DEL

Enter 1st value (0.104):

 \mathbf{M} +

Enter 2nd value (0.082):

M+

Enter 3rd value (0.096):

M+

Enter 4th value (0.100):

M+

Enter 5th value (0.087):

M+

Enter 6th value (0.114):

M+

Enter 7th value (0.108):

Detection Limits - Calculating LODs with the Calculator

Obtain the LOD

- \checkmark Get the Mean (\overline{x}).....:
- RCL
- 4
- $\bar{x} = 0.098714285$

- ✓ Get the standard deviation (SD):
- RCL
- 5
- Sx = 0.011353623

✓ Calculate the MDL (SD x t)..:

0.0356844

Calculator window will say FMS # 8.148=

Now that you have the LOD, perform a 5-step procedure to determine whether or not the LOD is valid.

# replicates	t-value
7	3.143
8	2.998
9	2.896
10	2.821

Detection Limits - EPA procedure

The 5-point check (mandatory checks)

LOD = 0.036

1. Is LOD greater than 10% of the spike level?

yes

Spiked at **0.1**, so LOD should be > 0.01 If LOD < 10% of spike level, re-do at lower spike level

2. Is the spike level greater than the LOD?

yes

Common sense: if LOD > spike level, couldn't detect it

3. Is the LOD below any relevant permit limit?

N/A

(if there is one)

Permit limit =_____

Detection Limits - EPA procedure

The 5-point check (additional checks)

Though not specifically required by the EPA method.... these checks help you obtain the best estimate of the LOD.

4. Is the signal-to-noise ratio (S/N) between 2.5 and 10? yes

$$S/N = Mean/std dev. S/N = 8.69$$

RCL 4 divided by **RCL 5** = on your calculator

5. Is mean recovery within reasonably expected limits?

yes

Mean recovery= mean/spike level x 100 = 98.71% Expected range is approximately 80 to 120%

Accuracy (spikes)

Accuracy (Bias): Matrix Spikes - Discussion Points

- \Rightarrow Why do we do matrix spikes?
- ⇒ How much should I spike? (spike to background ratio)
- ⇒ How much can I dilute my sample?
- ⇒ Calculating recovery
- ⇒ What does my recovery mean?
- ⇒ Exercise : review calculation examples

DO NOT need matrix spikes for:

- BOD
- Suspended Solids

Accuracy (Bias): Matrix Spikes

Why: To evaluate the accuracy of method as influenced by specific matrices (sample types).

How: Add known amount of analyte to randomly selected routine samples

When: 5% of samples (1 per 20 samples)

NOTE: Raw + effluent = 2 samples

What: 1. Calculate % recovery

2. Evaluate performance against control limits

Accuracy (Bias): Matrix Spikes

How much should you spike?

1. Consider the upper calibration range!

If you calibrate to 1 ppm... your effluent is about 0.25 ppm.... and you spike at 1.0 ppm.....you will exceed the calibration range.

2. Spike at 1 to 5 times the level in the sample

If your effluent averages 1 ppm, spike between 1 and 5 ppm

3. Limit additional volume to <10% of sample

(i.e., 1 ml standard + 10 ml sample)

- If you spike at less than 1x, risk the ability to recover it.
- As spike increases beyond 5X, TOO easy to recover.

Background correction

- If you dilute spike (with sample) to a known volume.... sample concentration <u>must</u> be adjusted.
 - If the spike is added "on top of" the sample (i.e., 100 mL + 10 mL)....
 the *spike concentration* must be adjusted as well.
- If dilution from the spike is kept to 1% or less... direct subtraction of unspiked sample is allowed.

Accuracy (Bias): Matrix Spikes

The goal of a matrix spike is to provide us with information regarding how accurate our sample analysis results are.

If spike recovery is only 50%, then the potential exists that the true concentration of the target parameter is as much as twice the measured concentration.

Dilution - How much is too much?

- ✓ The bottom line is that you want to use as much sample for the matrix spike as you did for the sample itself.
- ✓ References vary on how much dilution is TOO much.
- ✓ Our guidance has been to limit dilution to 10% or LESS.

We frequently see laboratories that prepare spikes by diluting a sample 50:50 with the spike solution. The next slide provides a more graphic explanation for why this is inappropriate.

Matrix Spike II: The solution is NOT dilution *starring:*

"100% Matrix"
Gilbert Brown
Packers DT
6'2" 325 lbs

"Matrix Spike"

Korey Stringer Vikings (boo!) OT 6'4" 340 lbs

"50% Diluted Matrix"
Glyn Milburn
ex-Packer KR
5'8" 177 lbs

Accuracy (Bias): Matrix Spikes

Calculation of % Recovery

% Recovery = Spiked Sample - Unspiked sample X 100Amount of spike added

seems simple enough.....BUT.....

Results will vary depending on whether you

- simply add the spike on top of the sample, or you
- add the spike first, then dilute to a fixed volume with sample, and
- is further compounded by whether or not you are digesting

Remember: Do NOT perform any rounding until the last step!

In-class example

Analysis: NH₃-electrode

Unspiked sample result: 2.0 mg/L

Volume of sample: 50 mL

Concentration of spike solution: 25 mg/L

Volume of spike solution added: 5 mL

Total Volume of sample + spike: 55 mL

Spiked sample result: 4.25 mg/L

$$= 4.25 - (2.0 \times 0.90) \times 100 = 107.0\%$$
(25 x 0.0909)

or:
$$233.75 - 100 \times 100 = 107.0\%$$

125

If you got 90%, you didn't account for dilution of EITHER the sample or the spike If you got 98% you accounted for dilution of the sample but not for the spike If you got 99%, you accounted for dilution of the spike, but not for the sample

Accuracy (Bias): Matrix Spikes - Calculations

- **A. Determine the # of ug** (of analyte) **in the unspiked sample**Multiply the unspiked sample concentration by the mLs of sample used
- B. Determine the contribution (ug) from the sample in the spike
 - 1. Subtract the mLs of the spike from the total mLs of sample + spike
 - 2. Multiply the answer from #1 above by the sample concentration
- C. Determine the # of ug (of analyte) spiked

 Multiply the concentration of the solution used to spike by the # mLs spiked
- **D.** Determine the # of ug (of analyte) in the spiked sample Multiply the spiked sample concentration by the # mLs of this sample
- E. Determine the # of ug (of analyte) recovered

 Subtract "B" from "D"
- **Recovery** = Divide "E" by "C" and multiply by 100 $key\ relationship:\ mg/L = ppm = ug/mL$

Matrix Spikes: Ammonia example- diluting to known volume

Unspiked sample 3.263 ug/mL Spiked sample 5.625 ug/mL Unspiked Sample Volume 100 mL Spiked sample volume 100 mL

Spike volume 20 mL Spike Conc. 20 ug/mL

A.Determine the # of ug (of analyte) in the unspiked sample = 326.3 $3.263 \text{ ug/mL} \times 100 \text{ mL}$

B. Contribution (ug) from the sample in the spike = 3.263 ug/mL X (100 mL - 20 mL) = 3.263 X 80

C. The # of ug (of analyte) spiked = 20 ug/mL X 20 mL

D. The # of ug (of analyte) in the spiked sample = 5.625 ug/mL X 100 mL

E. The # of ug (of analyte) **recovered** = 301.5 562.5 - 261.0

% Recovery = (301.5/400) X 100 75.375%

Matrix Spikes: Ammonia example- adding "on top"

Unspiked sample Unspiked Sample Volum	2.0 ug/mL e 50 mL	Spiked sample Total volume	4.25 ug/mL 55 mL
-	oike volume		
A. Determine the # o	of ug (of analyte)	in the unspiked sa	mple = 100
2.0 ug/mL X 5			100
B. Contribution (ug)		•	100
	55 mL - 5 mL)		40=
C. The # of ug (of an	,	=	125
25 ug/mL X			
D. The # of ug (of an	alyte) in the s p	piked sample =	233.75
4.25 ug/mLX	55 mL		
E. The # of ug (of an	alyte) <u>recover</u>	<u>ed</u> =	133.75
= D - B = 2	233.75 - 100		
% Recovery =			107.0%
= E / C = (13)	(3.75 / 125) X	100	

Matrix Spikes: Ammonia example- adding "on top" the conventional calculation

Unspiked sample 2.0 ug/mL Spiked sample 4.25 ug/mL Unspiked Sample Volume 50 mL Total volume 55 mL

Spike volume 5 mL Spike Conc. 25 ug/mL

 $= (C - B) \times 100 = (2.43182 / 2.272727) \times 100$

A. Correct the concentration in the unspiked sample = 2.0 ug/mL X (50/55) mL = 2.0 x 0.90909B. Correct the spike concentration = 25 ug/mL X (5/55) mL = .090909C. Calculate recovered concentration = 4.25 ug/mL - 1.81818 ug/mL% Recovery = 2.43182

Matrix Spikes: Phosphorus example

Unspiked sample .246 X 25 = 6.15ug/mL Unspiked sample Volume 2mL=>50 mL

Spiked sample .346x 25= 8.65 ug/mL Total volume 2 mL + 1 mL =>50 mL

Spike volume 1 mL Spike Conc. 5 ug/mL

= D - B =
$$17.3 - 12.3$$

% Recovery =
$$= E / C = (5/5) X 100$$

Precision (Replicates)

Precision: Replicates

Why: Used to evaluate repeatability (reproducibility)

How: Analyze randomly selected routine samples in duplicate (including digestion steps)

When: 5% of samples (1 per 20 samples)

NOTE: Raw + effluent = 2 samples

What: 1. Calculate Range (or RPD)

2. Evaluate performance against control limits

NOTES:

- 1. Replicates are frequently termed "Duplicates". The terms are interchangeable.
- 2. Precision is concentration dependent

Precision: Replicates

Example Sample = 22 Replicate = 18

Evaluating Replicates

Based on <u>absolute</u> difference (Range) or <u>Relative</u> <u>percent</u> difference (RPD) between duplicates

Range

expressed in same units as values

- = Absolute Difference
- = Larger value smaller value

Range =
$$22 - 18 = 4$$

RPD
expressed as %
RPD = Range / Mean
Range = 4

Mean of the replicates

RPD = Range / Mean
Range = 4

Mean =
$$(22 + 18)/2$$

= 20

RPD = $(4/20) \times 100$

= 20%

"Precision is concentration dependent"

Which is a brief way of saying that precision is difficult to evaluate without knowing the concentration levels involved.

Consider the analysis of TSS

- The range of replicates is 200 mg/L
- First thought: "Gee...that's terrible!"
- But....what if the two values were 12,400 and 12,600?
- Now 200 doesn't look so bad.
- But....your opinion changes if the two values are 250 and 50

Precision: Replicates

Dealing with concentration dependency

- Separate control limits based on concentration Ex. effluent phosphorus is about 0.05; influent about 5 ppm
- Best place to start is at 10 x the LOD or LOQ
- MAY need more than two levels

But you don't want so many different levels that you will never generate enough data to create your own limits either

One laboratory has 7 sites requiring BOD

- ✓ 1 site 10-50 BOD
- ✓ 4 sites range 30-200 BOD
- ✓ 1 site 350-700 BOD
- ✓ 1 site 900-3000 BOD

this situation may need 3 or even 4 concentration level ranges

Control Limits

Do I need control charts?

NO..... but.....

- © Control chart use is "strongly encouraged"
- © Control charts are useful in heading off problems
- © Control charts provide a <u>visual</u> tool

What exactly DO I need?

NR 149.14 (3) (g)

Quality control limits

for <u>replicate sample</u> and <u>spiked sample</u> analysis **shall** be calculated <u>for each matrix type</u> using a method from an authoritative source

[NR 149.03 (5) (a - w)].

•••••

When quality control data

shows a dependency on concentration,

the laboratory **shall** calculate <u>separate control limits</u> to address the concentration dependency.

.....

What exactly DO I need?

NR 149.14 (3) (g)

For labs with

- <u>less than 20</u> quality control results
- within 12 months,

the laboratory may set quality control limits based on

- information given in the authoritative sources,
- laboratory experience, or
- the experience of other laboratories.

Some sample control charts......

Evaluation of control charts can often be accomplished by a simple quick visual inspection

Is this analysis "in control"?

N = 20

SD = 7.28

Mean = 88.85

Limits = 67 to 110.7%

How are control limits calculated?

Matrix spike & RPD Control limits

- 1. Test the data for and eliminate outliers before proceeding.
- 2. Calculate the mean and standard deviation of the data.
- 3. Warning limits = Mean \pm 2 standard deviations
- 4. Control limits = Mean \pm 3 standard deviations *NOTE: RPD is a 1-tailed test, so only Mean* \pm

Range Control limits

- 1. Test the data for and eliminate outliers before proceeding.
- 2. Calculate the mean of the data.
- 3. Warning limits = $2.51 \times Mean$
- 4. Control limits = $3.27 \times Mean$

What if I don't have enough data?

If you do QC any less frequently than once every 2 weeks, you will not have enough data.

Use limits from an authoritative source Standard Methods 18th ed., Table 1020I

- •Spikes: 80-120%
- •RPD (high concentration): ± 10%
- •RPD (low concentration): \pm 25%

Use limits from an adjacent facility

Only do this if the facility has similar processes to your own and they are using the same procedure as you are.

Set limits based on your own lab experience

Be prepared to defend what you've come up with!

A lab auditor's dream: What if limits are TOO tight?

- 1. Be sure that you are not excluding <u>out-of-control</u> data! Outliers should be excluded, but all out-of-control points are **not** outliers.
- 2. Include enough significant figures.
 - If values are whole numbers (e.g., 10, 89%), you can use one or even two decimal points to include some variability (10.2, 89.3%).
 - This same problem has been observed when a laboratory only reported recoveries to the nearest 5%.

Control Limits - Spike Limits example

	Matrix	spikes
	Data #	<u>%R</u>
Exercise:	1	92
	2	94
Calculate matrix spike control limits	3	101
•	4	99 407
from the following set of data	5 6	107 102
	7	96
	8	99
Mean = 98.05	9	91
std dev (SD) = 5.1245025	10	105
2 x SD= 10.249005	11	103
3 x SD= 15.3735075	12	97
	13	100
Mean - 3SD = 98.05 - 15.374 = 82.676	14	89
Mean + $3SD = 98.05 + 15.374 = 113.424$	15	94
	16	98
Control Limits should be 82.7 to 113.4	17	90
	18	101
Warning Limits should be 87.8 to 108.3	19	104
	20	99

Control Limits - Replicates

RPD	= Range	x 100
	Mean of the replicates	S

	<u>Sample</u>	Replicate	Range	RPD
1	12	11	1	8.70%
2	10	8	2	22.22%
3	14	12	2	15.38%
4	10	9	1	10.53%
5	10	11	1	9.52%
6	9	88	1	11.76%
7	11	8	3	31.58%
8	14	11	3	24.00%
9	13	13	0	0.00%
<u>10</u>	8	9	1	11.76%
11	10	12	2	18.18%
12	15	13	2	14.29%
13	11	12	1	8.70%
14	10	12	2	18.18%
<u>15</u>	8	8	0	0.00%
16	10	11	1	9.52%
1 <u>7</u>	9	11	2	20.00%
18	10	11	1	9.52%
19	12	15	3	22.22%
20	11	11	0	0.00%

Exercise:

Calculate replicate control limits from the following set of data

Range Control Limits

Mean	1.45	
Warning	3.64	1.45 x 2.51
Control	4.74	1.45 x 3.27

RPD Control Limits

Mean	13.3%	
Std dev.	8.4%	
2SD= 16.8,	3SD=25.2	
Warning	30.1%	13.3+16.8
Control	38.4%	13.3+25.2

DO NOT plot the data used to create limits **DATE** %R against those same limits! 11/01 81 11/04 87 11/07 90 130 11/10 93 11/13 80 11/16 82 11/19 91 110 11/22 94 11/25 83 100 11/28 110 90 12/01 91 \triangle 12/04 92 80 12/07 80 12/10 88 70 12/13 94 12/16 92 60 83 12/19 12/22 80 11/13 11/19 11/25 ¹ 12/01 | 12/07 | 12/13 | 12/19 | 12/25 12/25 91 12/28 95 SD = 7.28Mean = 88.85Limits = 67 to 110.7% N = 20

DO plot data from period B-C against the limits created from data set A-B!

Control Limits - Dealing with outliers

There are many statistical tests available for		Critical
identifying outliers. One that is relatively easy to	<u>N</u>	<u>Z</u>
	18	2.65
use is the Grubbs test.	19	2.68
	20	2.71
Z = mean - questionable data point	21	2.73
	22	2.76
SD	23	2.78
	24	2.80
	25	2.82
Only test the highest (and/or lowest) value	26	2.84
➤ Ignore the sign of the "Z" valueis always "+"	27	2.86
➤ Include the suspected outlier when calculating	28	2.88
mean and SD	29	2.89
	30	2.91
➤ If the calculated Z-value is greater than the	35	2.98
criterion Z value for that number of data	40	3.04
points, then the value is an outlier	50	3.13
	60	3.20

Control Limits - Dealing with outliers

Exercise

DATE	<u>%R</u>
11/01	81
11/04	87
11/07	90
11/10	93
11/13	80
11/16	82
11/19	91
11/22	94
11/25	83
11/28	110
12/01	91
12/04	92
12/07	80
12/10	88
12/13	94
12/16	92
12/19	83
12/22	80
12/25	91
12/28	95

1. Calculate the mean and SD

Mean =
$$88.85$$
 SD = 7.278 Limits = $67 - 110.7$

2. Test the high value (110)

$$Z= 110 - 88.85 = 2.9058$$
 7.278
 $N = \frac{Z}{18}$
 2.65
 19
 2.68

3. Test the <u>low</u> value (80)

$$Z = 88.85 - 80 = 1.2159$$

$$7.278$$

4. Discard outliers; re-calculate mean and SD Since Z_{110} > criterion, 110 is an outlier

Mean =
$$87.737$$
 SD= 5.4553 Limits = $71 - 104$

NOTE: Step 4 may also require a re-check for additional outliers!

Corrective Action

What IS Corrective Action?

- ✓ In a nutshell, Corrective Action is anything done in response to an out-of-control situation.
- ✓ It MUST, however, be designed to <u>identify the reason</u> for the failure, and then <u>correct it</u>.
- ✓ There should also be a plan to quickly verify that the action taken has the desired effect.

What Corrective Action is NOT

- Simply labeling all matrix spike failures as "matrix effects"
- Checking calculations only
- Simply re-running the samples

What do I do with the data?

NR 149.14(3) (h, i) requires the laboratory to:

- Repeat all samples
 - * back to the last valid QC sample of the same type
 - Funless you can show that ONLY that one sample is affected
- F If samples cannot be re-analyzed....
 - results must be qualified back to the acceptable check.

DMRs require you to...

- mark the "QC Exceedance" box, and also
- identify (*) all sample results that are affected.

What else can I do?

You may wish to

...increase the frequency of QC sample analysis

...above the minimum

...to minimize the amount of data which must be qualified ...in the event of an exceedance.

- It's a good idea to create some sort of logbook or form to document these situations.
 - HOW did you become aware of the problem?
 - WHAT action did you take to fix the problem?
 - HOW do you know the problem has been resolved?

Corrective Action

Situation

Corrective Action

BOD: GGA failing high

- 1) Was initial calibration done properly?
- 2) Change in seed source?
- 3) Possibility of nitrification?
- 4) Qualify data on DMR back to last good GGA.

NH₃ electrode slope < -54 mV

- 1) Check that membrane is intact; no bubbles.
- 2) Make sure fresh filling solution is used.
- 3) Is the electrode stablizing normally? too slow?
- 4) Is the intercept climbing above the LOD?

Phosphorus calibration....

"r" is <<<0.995

- 1) View plot...does a single standard look funny?
- 2) Beyond linear range? (about 1 ppm for most)
- 3) Contamination..especially at low level?

Documentation

A laboratory is required to:

maintain records: NR 149.06 [esp. (5)]

- which are un-alterable,
- which enable complete traceability [by an auditor]
- for a given three-year compliance period

Operating Principles

- ► If you didn't document it, you didn't do it
- ► You did the work.....take credit for it!

Documentation

But.... why? No one ever looks at this stuff....

- Consider it insurance: pay it and hope you won't need it
- If your data comes under scrutiny, you lose without it
- It can actually help identify problems
- Your auditor WILL look at this
- Provides credibility for test results
- Shows you are doing the test properly
- Keeps those DNR auditors off your back!

The obvious (basic items to document)

- Refrigerator temperature
- Oven temperatures
- Balance calibration verification
- Raw data from sample analysis
- When the membrane is changed on the DO probe

The not-so-obvious

Corrective actions taken if an auditor asks what you did in response to a GGA failure... can you <u>show</u> them? (ability to <u>tell</u> doesn't count!)

Historical QC limits can you find control limits in use 3 years ago?

Blind Sample Performance History
Can you show an auditor your performance over the past 3 years?

Instrument maintenance

Spike preparation - often overlooked

What the code says: [NR 149.06 (1)(intro.)]

Records to be retained include but are not limited to records of the following:

(b) Quality control data for spikes, replicates, method blanks, blind standards, reference samples, calibration standards and known standards. Quality control results shall be traceable to all of the associated sample results.

What it means (as it relates to spikes):

An auditor must be able to verify spike concentration, which means

- Concentration of the solution used to prepare spikes
- Information necessary to show that spike solution had not expired.
- The volume of spike solution used
- The volume of sample used
- The final volume of sample + spike
- The sample that was used to prepare the spike

Summary

- ☑ Formulate a gameplan [your QA manual]
- ☑ Calibrate (and evaluate it)
- ☑ Determine your detection capability
- ☑ Determine your accuracy
- ☑ Determine your precision
- ✓ Evaluate your precision and accuracy
- ☑ Implement a corrective action plan
- ✓ Provide documentation

Questions?